

DESARROLLOS DE NIVELES GUIA NACIONALES DE CALIDAD DE AGUA AMBIENTE CORRESPONDIENTES A CARBENDAZIM

Julio 2004

INDICE

III) Nivel guía de calidad de agua ambiente para protección de la biota acuática
correspondiente a carbendazim (aplicable a agua dulce)
III.1) Introducción
III.2) Derivación del nivel guía de calidad para protección de la biota acuática
III.2.a) Selección de especies
III.2.b) Cálculo del Valor Agudo Final
III.2.c) Cálculo del Valor Crónico Final
III.3) Establecimiento del nivel guía de calidad para carbendazim correspondiente a
protección de la biota acuática
IX) Técnicas analíticas asociadas a la determinación de carbendazim
X) Referencias
XI) Historial del documento

III) NIVEL GUIA DE CALIDAD DE AGUA PARA PROTECCION DE LA BIOTA ACUATICA CORRESPONDIENTE A CARBENDAZIM (APLICABLE A AGUA DULCE)

III.1) Introducción

La información disponible acerca de la toxicidad tóxica del carbendazim sobre los organismos acuáticos, indica que este fungicida es sumamente deletéreo tanto para los invertebrados como para los vertebrados de agua dulce. Para los invertebrados, se observaron efectos tóxicos agudos a concentraciones que varían, según la especie, entre los 25 y 4948 µg/l; para los vertebrados, tal variación se da entre 7 y 3400 µg/l (Palawski and Knowles, 1986; Van Wijngaarden et al., 1998).

En cuanto a los efectos tóxicos crónicos del carbendazim sobre los animales acuáticos, Van Wijngaarden et al. (1998) observaron que concentraciones iguales a 3,4, 103, 301 y 25,8 µg/l no afectaban la reproducción de *Dugesia lugubris*, *Bithynia tantaculata*, *Planorbis planorbis* y *Daphnia magna*, respectivamente.

En lo que hace a algas y plantas acuáticas, se cuenta con información correspondiente al alga *Chlorella pyrenoidosa*, para la que se observaron efectos adversos a una concentración igual a 340 µg/l (Canton, 1976). Douglas y Handley (1987) consideran al carbendazim como un alguicida ya que luego de un período de 9 días posteriores a su aplicación no observaron una recuperación en el crecimiento de las poblaciones algales expuestas a este compuesto (*Selenastrum capricornutum*).

Estudios realizados con el pez *Lepomis punctatus* indican que a concentraciones comprendidas entre 0,1 y 5 mg/l, el carbendazim no es bioconcentrado significativamente (Du Pont, 1972).

III.2) Derivación del nivel guía para protección de la biota acuática

Dado que no se cuenta con suficientes datos de toxicidad crónica para calcular directamente el Valor Crónico Final para carbendazim, se efectúa este cálculo a partir de datos de toxicidad aguda y aplicando un factor de extrapolación. Se apela a dicho factor en razón de que no se dispone tampoco de la información sobre toxicidad crónica requerida para determinar la Relación Final Toxicidad Aguda/Crónica (FACR).

III.2.a) Selección de especies

En la Tabla III.1 se exponen 26 datos asociados a manifestaciones de toxicidad aguda del carbendazim sobre animales que corresponden a concentraciones letales para el 50% de los individuos expuestos (CL_{50}) o a concentraciones para las que se observan efectos adversos para el 50% de los individuos expuestos (CE_{50}). En la Tabla III.2 se presenta un dato asociado a efectos tóxicos del carbendazim sobre algas. El conjunto de datos seleccionados se considera apropiado en virtud de cubrir un rango razonable de grupos taxonómicos, a saber:

cuatro familias de peces (Centrarchidae, Ictaluridae, Poecilidae y Salmonidae), dos de crustáceos (Daphnidae y Gammaridae), una de poliquetos (Naididae), una de planarias (Planariidae) y una de algas (Chlorellaceae).

TABLA III.1 - CONCENTRACIONES DE CARBENDAZIM ASOCIADAS A EFECTOS TOXICOS AGUDOS SOBRE LAS ESPECIES DE ANIMALES ACUATICOS SELECCIONADAS PARA EL ESTABLECIMIENTO DEL NIVEL GUIA CORRESPONDIENTE

Especie	Familia	Concentración	Valor Agudo	Referencia
		asociada a toxicidad	Medio para cada	
		aguda	especie	
		[ug/l]	(SMAV)	
		Z 10	[ug/l]	
Daphnia magna	Daphnidae	640		Canton, 1976
Daphnia magna	Daphnidae	460		Canton, 1976
Daphnia magna	Daphnidae	87	295	Van Wijngaarden et al., 1998
Dero digitata	Naididae	980	980	Van Wijngaarden et al., 1998
Dugesia lugubris	Planariidae	25	25	Van Wijngaarden et al., 1998
Gammarus pulex	Gammaridae	55	55	Van Wijngaarden et al., 1998
Ictalurus punctatus	Ictaluridae	7		Palawski and Knowles, 1986
Ictalurus punctatus	Ictaluridae	10		Palawski and Knowles, 1986
Ictalurus punctatus	Ictaluridae	12		Palawski and Knowles, 1986
Ictalurus punctatus	Ictaluridae	14		Palawski and Knowles, 1986
Ictalurus punctatus	Ictaluridae	16		Mayer and Ellersieck, 1986
Ictalurus punctatus	Ictaluridae	18		Palawski and Knowles, 1986
Ictalurus punctatus	Ictaluridae	19		Palawski and Knowles, 1986
Ictalurus punctatus	Ictaluridae	23		Palawski and Knowles, 1986
Ictalurus punctatus	Ictaluridae	23		Palawski and Knowles, 1986
Ictalurus punctatus	Ictaluridae	32	16	Palawski and Knowles, 1986
Lepomis macrochirus	Centrarchidae	3200	3200	Palawski and Knowles, 1986
Oncorhynchus mykiss	Salmonidae	24		Palawski and Knowles, 1986
Oncorhynchus mykiss	Salmonidae	100		Palawski and Knowles, 1986
Oncorhynchus mykiss	Salmonidae	145		Palawski and Knowles, 1986
Oncorhynchus mykiss	Salmonidae	320 (1)		Palawski and Knowles, 1986
Oncorhynchus mykiss	Salmonidae	370 (1)		Mayer and Ellersieck, 1986
Oncorhynchus mykiss	Salmonidae	480 (1)	70	Canton, 1976
Poecilia reticulata	Poecilidae	3400	3400	Canton, 1976
Simocephalus vetulus	Daphnidae	4948	4948	Van Wijngaarden et al., 1998
Stylaria lacustris	Naididae	219	219	Van Wijngaarden et al., 1998

Nota:

^{(1):} Dato no utilizado para el cálculo del Valor Agudo Medio para cada especie (SMAV) por diferir en el orden de magnitud con el menor de los datos seleccionados.

TABLA III.2 - CONCENTRACIONES DE CARBENDAZIM ASOCIADAS A EFECTOS TOXICOS SOBRE ESPECIES ACUATICAS SELECCIONADAS PARA EL ESTABLECIMIENTO DEL VALOR FINAL PARA PLANTAS (FPV)

Especie	Familia	Concentracion asociada a efectos tóxicos [µg/l]	Referencia
Chlorella pyrenoidosa	Chlorellaceae	340	Canton, 1976

III.2.b) Cálculo del Valor Agudo Final

El Valor Agudo Final (FAV) para carbendazim se calcula de acuerdo al procedimiento descripto en la metodología cuando la toxicidad de una sustancia no está relacionada con las características del agua, ya que no se cuenta con datos suficientes como para cuantificar dicha relación. A partir de los datos que se exhiben en la Tabla III.1, se determinan los valores agudos medios para cada especie (SMAV), que se exhiben en la tabla antedicha, y género (GMAV), que se presentan ordenados crecientemente en la Tabla III.3, con sus correspondientes números de orden, R, y probabilidades acumulativas, P_R, siendo P_R = R/(N+1).

TABLA III.3 - CARBENDAZIM: PROBABILIDAD ACUMULATIVA (PR) y VALOR AGUDO MEDIO PARA CADA GENERO (GMAV)

Género	GMAV [µg/L]	P _R	R
Ictalurus	16	0,09	1
Dugesia	25	0,18	2
Gammarus	55	0,27	3
Oncorhynchus	70	0,36	4
Stylaria	219	0,45	5
Daphnia	295	0,55	6
Dero	980	0,64	7
Lepomis	3200	0,73	8
Poecilia	3400	0,82	9
Simocephalus	4948	0,91	10

De acuerdo al esquema metodológico establecido, el análisis de regresión de los GMAV correspondientes a los números de orden 1, 2, 3 y 4 arroja los siguientes resultados para la pendiente (b), la ordenada al origen (a) y la constante (k):

> b = 5,29a = 1.11

k = 2,29

Calculando el Valor Agudo Final (FAV) según:

 $FAV = e^k$

resulta:

$$FAV = 9.9 \mu g/l$$

III.2.c) Cálculo del Valor Crónico Final

En función de la información toxicológica disponible correspondiente a animales, se juzga apropiado utilizar un factor de extrapolación igual a 10 para calcular el Valor Crónico Final (FCV) a partir del FAV.

Dividiendo el FAV calculado (9,9 µg/l) por el factor de extrapolación elegido (10), resulta:

FCV (Carbendazim) =
$$1 \mu g/l$$

III.3) Establecimiento del nivel guía de calidad para carbendazim correspondiente a protección de la biota acuática

En virtud de que el Valor Crónico Final (FCV) no supera al Valor Final para Plantas (FPV) que resulta de la Tabla III.2 (340 µg/l), se especifica el siguiente nivel guía de calidad para carbendazim a los efectos de protección de la biota acuática (NGPBA), referido a la muestra de agua sin filtrar:

NGPBA (Carbendazim) $\leq 1 \mu g/l$

IX) TECNICAS ANALITICAS ASOCIADAS A LA DETERMINACION DE **CARBENDAZIM**

En la Base de Datos "Técnicas Analíticas" pueden ser seleccionados métodos analíticos validados para evaluar la cumplimentación del nivel guía nacional de calidad de agua ambiente derivado para carbendazim.

X) REFERENCIAS

Canton, J.H. 1976. The toxicity of benomyl, thiophanate-methyl, and BCM to four freshwater organisms. Bull. Environ. Contam. Toxicol. 16(2): 214-218.

Douglas, M.T. and J.W. Handley. 1987. The algistic activity of carbendazim technical. Huntington, United Kingdom, Huntingdon Research Centre Ltd (Unpublished report No. DPT 171 (g)/871604, prepared for E.I. Du Pont de Nemours and Co., Inc.). En: IPCS (International Programme on Chemical Safety). 1993. Environmental Health Criteria 149. Carbendazim. World Health Organization. Geneva.

Du Pont. 1972. Residue studies - fish: benomyl. MBC, and 2-AB. Wilmington, Delaware, E.I. Du Pont de Nemours and Co., Inc. (Unpublished report). En: IPCS (International Programme on Chemical Safety). 1993. Environmental Health Criteria 149. Carbendazim. World Health Organization. Geneva.

Mayer, F.L. and M.R. Ellersieck. 1986. Manual of acute toxicity: interpretation and data base for 410 chemicals and 66 species of freshwater animals. Fish. Wildlife ser. Res. Publ., Rep. No. 160. Washington, DC. USA.

Palawski, D.U. and C.O. Knowles. 1986. Toxicological studies of Benomyl and Carbendazim in rainbow trout, channel catfish and bluegills. Environ. Toxicol. Chem. 5(12): 1039-1046. En: AQUIRE (Aquatic toxicity Information Retrieval) database. U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, Minnesota.

Van Wijmgaarden, R.P.A., S.J.H. Crum, K. Decraene, J. Hattink and A. van Kammen. 1998. Toxicity of Derosal (active ingredient Carbendazim) to aquatic invertebrates. Chemosphere 37(4): 673-683.

XI) HISTORIAL DEL DOCUMENTO

Fecha de edición original	junio 2003
Actualización julio 2004	Incorporación de Sección IX